Тренировка силы окислительных мышечных волокон. Типы мышц и тренировки Высокопороговые мышечные волокна тренировка

Тонкие мышечные волокна формируют каждую скелетную мышцу. Их толщина составляет всего около 0,05-0,11 мм, а длина достигает 15 см. Мышечные волокна поперечно-полосатой мышечной ткани собраны в пучки, в состав которых входит по 10-50 волокон. Эти пучки окружены соединительной тканью (фасцией).

Мышца сама по себе также окружена фасцией. Около 85-90 % ее объема составляют мышечные волокна. Оставшаяся часть - нервы и кровеносные сосуды, которые проходят между ними. На концах мышечные волокна поперечно-полосатой мышечной ткани постепенно переходят в сухожилия. Последние же крепятся к костям.

Митохондрии и миофибриллы в мышцах

Рассмотрим строение мышечного волокна. В цитоплазме (саркоплазме) его находится большое количество митохондрий. Они играют роль электростанций, в которых происходит обмен веществ и накапливаются богатые энергией вещества, а также те, которые нужны для обеспечения энергетических потребностей. В составе любой мышечной клетки имеется несколько тысяч митохондрий. Они занимают примерно 30-35 % общей ее массы.

Строение мышечного волокна таково, что цепочка из митохондрий выстраивается вдоль миофибрилл. Это тонкие нити, обеспечивающие сокращение и расслабление наших мышц. Обычно в одной клетке находятся несколько десятков миофибрилл, при этом длина каждой может доходить до нескольких сантиметров. Если сложить массу всех миофибрилл, входящих в состав мышечной клетки, то ее процентное соотношение от общей массы будет около 50 %. Толщина волокна, таким образом, зависит в первую очередь от числа миофибрилл, находящихся в нем, а также от их поперечного строения. В свою очередь, миофибриллы состоят из большого количества крохотных саркомеров.

Поперечно-полосатые волокна свойственны мышечным тканям как женщин, так и мужчин. Однако их строение несколько отличается в зависимости от пола. По результатам биопсии мышечной ткани были сделаны выводы о том, что в мышечных волокнах женщин процент миофибрилл ниже, чем у мужчин. Это относится даже к спортсменкам высокого уровня.

Кстати, сама распределена неодинаково по телу у женщин и мужчин. Подавляющая ее часть у женщин находится в нижней части тела. В верхней же объемы мышц невелики, а сами они мелкие и зачастую вовсе нетренированные.

Красные волокна

В зависимости от утомляемости, гистохимической окраски и сократительных свойств мышечные волокна делятся на следующие две группы: белые и красные. Красные представляют собой медленные волокна, имеющие небольшой диаметр. Для того чтобы получить энергию, они используют и углеводов (такая система энергообразования называется аэробной). Эти волокна называют также медленными или медленносокращающимися. Иногда их именуют волокнами 1 типа.

Почему красные волокна получили такое название

Красными они называются из-за того, что имеют красную гистохимическую окраску. Это объясняется тем, что в этих волокнах содержится множество миоглобина. Миоглобин - особый пигментный белок, имеющий красный цвет. Его функция состоит в том, что он доставляет кислород вглубь мышечного волокна от капилляров крови.

Особенности красных волокон

Медленные мышечные волокна имеют множество митохондрий. В них осуществляется процесс окисления, который необходим для получения энергии. Красные волокна окружены большой сетью капилляров. Они нужны для доставки большого объема кислорода вместе с кровью.

Медленные мышечные волокна хорошо приспособлены к осуществлению аэробной системы энергообразования. Сравнительно невелика сила их сокращений. Скорость, с которой они потребляют энергию, является достаточной для того, чтобы обходиться только аэробным метаболизмом. Красные волокна прекрасно подходят для осуществления неинтенсивной и продолжительной работы, такой как ходьба и легкий бег, стайерские дистанции в плавании, аэробика и др.

Сокращение мышечного волокна обеспечивает выполнение движений, которые не требуют больших усилий. Благодаря ему также поддерживается поза. Эти поперечно-полосатые волокна свойственны мышечным тканям, которые включаются в работу при нагрузках, находящихся в пределах от 20 до 25 % от максимума возможной силы. Они характеризуются отличной выносливостью. Однако красные волокна не работают при осуществлении спринтерских дистанций, подъеме тяжелого веса и др., поскольку эти типы нагрузок предполагают довольно быстрый расход и получение энергии. Для этого предназначены белые волокна, о которых мы сейчас и поговорим.

Белые волокна

Их называют также быстрыми, быстросокращающимися волокнами 2 типа. Их диаметр больше по сравнению с красными. Для получения энергии они используют главным образом гликолиз (то есть система энергообразования у них анаэробная). В быстрых волокнах находится меньшее количество миоглобина. Именно поэтому они являются белыми.

Расщепление АТФ

Быстрым волокнам свойственна большая активность фермента АТфазы. Это значит, что расщепление АТФ происходит быстро, при этом получается большое количество энергии, которая нужна для интенсивной работы. Поскольку белые волокна характеризуются большой скоростью расхода энергии, им необходима и большая скорость восстановления АТФ-молекул. А ее способен обеспечить лишь процесс гликолиза, так как, в отличие от окисления, он происходит в саркоплазме волокон мышц. Поэтому доставка кислорода митохондриям не требуется, как и доставка энергии от последних к миофибриллам.

Почему белые волокна быстро устают

Благодаря гликолизу происходит образование лактата (молочной кислоты), быстро накапливающегося. Из-за этого белые волокна устают достаточно быстро, что останавливает в конечном счете работу мышцы. В красных волокнах при аэробном образовании не образуется Именно поэтому они могут поддерживать умеренное напряжение в течение длительного времени.

Особенности белых волокон

Белые волокна характеризуются большим диаметром относительно красных. Кроме того, в них содержится намного больше гликогена и миофибрилл, однако митохондрий в них меньше. Клетка мышечного волокна этого типа имеет в своем составе и креатинфосфат (КФ). Он требуется на начальном этапе осуществления высокоинтенсивной работы.

Больше всего белые волокна приспособлены для совершения мощных, быстрых, но кратковременных усилий, поскольку у них низкая выносливость. Быстрые волокна, по сравнению с медленными, способны сокращаться в 2 раза быстрее, а также развивать силу, в 10 раз большую. Максимальную скорость и силу человек развивает именно благодаря им. Если работа требует 25-30 % максимального усилия и выше, это значит, что участие в ней принимают именно белые волокна. Их делят по способу получения энергии на следующие 2 типа.

Быстрые гликолитические волокна мышечной ткани

Первый тип - быстрые гликолитические волокна. Процесс гликолиза используется ими для получения энергии. Другими словами, они способны применять только анаэробную систему энергообразования, способствующую образованию молочной кислоты (лактата). Соответственно, данные волокна не производят энергию с участием кислорода, то есть аэробным путем. Быстрые гликолитические волокна характеризуются максимальной скоростью сокращений и силой. Они играют главную роль при наборе массы у спортсменов-бодибилдеров, а также обеспечивают бегунам и пловцам, выступающим на спринтерских дистанциях, максимальную скорость.

Быстрые окислительно-гликолитические волокна

Второй тип - быстрые окислительно-гликолитические волокна. Их называют также переходными или промежуточными. Данные волокна являются своего рода промежуточным типом между медленными и быстрыми мышечными волокнами. Они характеризуются мощной системой энергообразования (анаэробной), однако приспособлены и к осуществлению довольно интенсивной аэробной нагрузки. Другими словами, эти волокна могут развивать большие усилия и высокую скорость сокращения. При этом основным источником энергии является гликолиз. В то же время, если интенсивность сокращения становится низкой, они способны достаточно эффективно использовать окисление. Этот тип волокон задействуется в работе, если нагрузка составляет от 20 до 40 % от максимума. Однако, когда она составляет около 40 %, организм человека сразу же полностью переходит на использование быстрых гликолитических волокон.

Соотношение быстрых и медленных волокон в организме

Были проведены исследования, в процессе которых был установлен тот факт, что соотношение быстрых и медленных волокон в человеческом организме обусловливается генетически. Если говорить о среднестатистическом человеке, у него около 40-50 % медленных и примерно 50-60 % быстрых. Однако каждый из нас индивидуален. В организме конкретного человека могут преобладать как белые, так и красные волокна.

Пропорциональное соотношение их в различных мышцах тела также не одинаково. Это объясняется тем, что мышцы и их группы в организме выполняют различные функции. Именно из-за этого поперечные мышечные волокна довольно сильно отличаются по своему составу. К примеру, в трицепсе и бицепсе находится примерно 70 % белых волокон. Немного меньше их в бедре (около 50 %). А вот в икроножной мышце этих волокон всего 16 %. То есть если в функциональную задачу той или иной мышцы входит более динамичная работа, в ней будет больше быстрых, а не медленных.

Связь потенциала в спорте с типами мышечных волокон

Нам уже известно о том, что общее соотношение красных и белых волокон в человеческом организме заложено генетически. Из-за этого у разных людей и есть разный потенциал в спортивных занятиях. Кому-то лучше даются виды спорта, требующие выносливость, а кому-то - силовые. Если преобладают медленные волокна, человеку намного больше подходят лыжи, заплывы на длинные дистанции и т. д., то есть виды спорта, в которых задействована главным образом аэробная система энергообразования. Если же в организме больше быстрых мышечных волокон, то можно добиться хороших результатов в бодибилдинге, беге на короткие дистанции, спринтерском плавании, тяжелой атлетике, пауэрлифтинге и др. видах, где главное значение принадлежит взрывной энергии. А ее, как вы уже знаете, могут обеспечить лишь белые мышечные волокна. У великих спортсменов-спринтеров всегда преобладают именно они. Количество их в мышцах ног достигает у них 85 %. Если же наблюдается примерно равное соотношение различных типов волокон, человеку отлично подойдут средние дистанции в беге и плавании. Однако сказанное выше вовсе не означает, что если преобладают быстрые волокна, такому человеку никогда не удастся пробежать марафонскую дистанцию. Он пробежит ее, однако точно не станет чемпионом в данном виде спорта. И наоборот, если в организме намного больше красных волокон, результаты в бодибилдинге будут у такого человека хуже, нежели у среднестатистического, соотношение красных и белых волокон у которого примерно равное.

Сколько делать повторений, чтобы раскачать окислительные мышечные волокна ?

В прошлой статье я рассказывал о белых мышечных волокнах , теперь настало время красных, т.к. они тоже дают большой вклад в развитие максимальных объёмов. Работая несколько лет тренером, я заметил, что всего процентов 10 спортсменов тренируют их, а большинство даже и не знают о том, что у них потенциал для развития такой же, как и у белых.

Тренировка медленных мышечных волокон

Опять же не буду вас путать большим объёмом непонятных для вас терминов, просто скажу, как их нужно тренировать. Если кому-то интересно, почему именно так, можете почитать профессора Силуянова.

Я выделяю 4 основных правила для развития этих волокон:

1.Время нахождения под нагрузкой должно быть от 30 до 50 секунд.

2.Частичная амплитуда. Мышцы нельзя расслаблять, они должны быть постоянно в напряжении. Это важно для максимального закисления молочной кислотой. Во время подхода вы должны испытывать чувство жжения.

3.Медленная скорость повторений.

4.Вес должен быть 30-50% от разового максимума. Иначе вы не сможете выполнить необходимый объём работы.

Сколько делать подходов для медленных мышечных волокон?

Подходов должно быть от 2 до 5, с отдыхом между ними не менее 5 минут. Но тут не просто подходы, а они тройные. Сейчас поясню.

Делаете подход в диапазоне 30-50 секунд, добиваетесь сильного жжения, останавливаете подход, отдыхаете 30 секунд, и снова приступаем к выполнению, потом 30 секунд и третий такой же подход. Вот теперь мы выполнили 1 длинный тройной подход, их должно быть от 2 до 5 за тренировку. Плюс таких тренировок в том, что их можно выполнять дома. К примеру, отжимания от пола или подъем небольших гантелей для развития дельт, бицепсов и т.д.

Когда их тренировать?

Я вижу тут 2 варианта:

1.Тренировать их после тренировки быстрых мышечных волокон. Сначала заканчиваете тренировку белых, только потом приступаем к красным, это очень важный момент!

2.Делать периодизацию.

На 1-й неделе тренируем белые (малое количество повторений, вес 70-90%, взрывной стиль, отказ в диапазоне 7-30 секунд).

На 2-й недели красные (Небольшой вес отягощения 30-50%, медленные и частичные повторения, время под нагрузкой 30-50 секунд).

Друзья пробуйте, экспериментируйте, кто не пробовал. Могу сказать, что эта схема вам поможет преодолеть плато в вашем прогрессе.

Дают неплохой вклад в увеличении объёма мускулатуры, и если вы никогда их не тренировали, то это поможет вам накинуть дополнительные сантиметры в обхвате.

Преобладающий тип ваших мышечных волокон определяется генами. Однако, от него во многом зависит результат, которого Вы добьётесь от тренировок.

Напомню, что мышечные волокна бывают трёх типов: белые, красные и промежуточного типа.

Белые мышечные волокна

имеют свойство увеличиваться в толщину, благодаря чему мышцы быстро увеличиваются в объёме. Белые же волокна отвечают за силу и скорость сокращения мышц. Они обеспечивают мощные, но кратковременные (несколько секунд) усилия.

Красные мышечные волокна

незначительно увеличиваются в толщину, однако могут сокращаться гораздо дольше, чем белые, то есть определяют выносливость мышцы. Кстати говоря, красные мышечные волокна в значительной степени обеспечивают себя энергией за счёт жиров.

Промежуточные волокна

обладают свойствами и белых и красных. И обычно их количество в мышцах невелико.

Как проводить тест

Для проведения теста на мышечные волокна Вам нужно будет определить свой повторный максимум в одном из упражнений.

Повторный максимум — это максимальный вес, который вы можете поднять только один раз в данном упражнении. Поднять технически чисто и без чрезмерного напряжения.

Если у Вас уже есть опыт тренировок с тяжестями, Вы, скорее всего, уже знаете свои повторные максимумы в некоторых упражнениях. Если же Вы ещё не имеете опыта таких тренировок, тогда следуйте инструкции ниже, чтобы не нанести себе вред во время этого теста.

Инструкция по определению своего повторного максимума

Прежде всего, выберите упражнение, которое у Вас получается очень хорошо. Его Вам делать приятно и техника даётся легко. Для начинающих в целях тестирования подходят следующие упражнения:

В идеале это должно быть простое односуставное упражнение. В тренажёрном зале можно выполнить:

и некоторые другие упражнения.

Итак, решите, какое именно упражнение Вы будете использовать и начните определение повторного максимума.

Тест стоит проводить в отдельный от тренировок день. Хорошенько разомнитесь и выставьте на снаряде вес, который Вы можете одолеть не менее 8 раз. Сделайте с ним подход из 6 повторений.

Затем увеличьте вес примерно на 10%, отдохните 2-3 минуты, и снова проделайте подход в данном упражнении, сделав 3-4 повторения.

Таким образом, продолжайте эту процедуру до тех пор, пока не достигнете такого веса, который будет Вам по силам лишь в одном технически точном повторении. Убедитесь, что вес, увеличенный на 1-2% Вам уже не по силам.

Если Вы используете упражнение жим штанги лёжа на наклонной или на горизонтальной скамье, обязательно позовите на помощь партнёра, который будет следить за Вами и «спасёт» Вас, если не справитесь.

Прекратите выполнение теста, если почувствуете малейшие признаки травмы или перенапряжения: боль в мышцах или в суставах, неудобство траектории упражнения, потемнение в глазах.

Затратив примерно 15 минут Вы узнаете, на что способны в данном упражнении.

Вы определили свой повторный максимум. Что делать дальше?

Отдохните примерно 10 минут, стараясь не остыть. Для этого накиньте на себя более тёплую одежду, желательно с капюшоном. Просто походите по залу и посмотрите, как тренируются другие. Время от времени делайте различные махи руками и наклоны, чтобы поддержать мышцы в тонусе.

После этой паузы выставьте в том самом упражнении вес, равный в точности 80% от повторного максимума.

А затем технически точно (не слишком медленно, не слишком быстро, но обязательно в полную амплитуду) поднимите его столько раз, сколько сможете, прилагая все возможные усилия. Но не перенапрягаясь до темноты в глазах.

Интерпретация теста

Если вы смогли поднять 80% от повторного максимума 4-7 раз, значит в Ваших мышцах преобладают белые (быстрые) мышечные волокна. Они в Ваших мышцах составляют более 50% от всех волокон.

Если Вы смогли поднять вес 80% от повторного максимума 10-12 раз, значит Ваши мышцы содержат примерно равное количество белых и красных мышечных волокон, а также много волокон промежуточного типа.

Если Вы смогли поднять вес 80% от повторного максимума 15 и более раз, значит в Ваших мышцах преобладают красные мышечные волокна. Их содержание превышает 50% от всех волокон.

Всем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах.
Вот только классификаций этих типов волокон несколько, и они не всегда совпадают. Какие же классификации сейчас приняты?
Мышечные волокна делятся на:

  1. Белые и красные;
  2. Быстрые и медленные;
  3. Гликолитические, промежуточные и окислительные;
Белые и красные. На поперечном сечении мышечное волокно может иметь различный цвет. Он зависит от количества мышечного пигмента миоглобина в саркоплазме мышечного волокна. Если содержание миоглобина в мышечном волокне большое, то волокно имеет красно-бурый цвет. Если миоглобина мало, то бледно-розовый. У человека почти в каждой мышце содержатся белые и красные волокна, а так же волокна слабо пигментированные. Миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям, соответственно его количество определяется числом митохондрий. Увеличивая количество митохондрий в клетке специальными тренировками, мы увеличиваем количество миоглобина и изменяем цвет волокна.

Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии, заключенной в АТФ, осуществляется благодаря АТФ-азе. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.

Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые используются для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.
По этому признаку мышечные волокна подразделяются на три группы:
1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.
2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.
3. Гликолитические мышечные волокна имеют очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты с ресинтезом АТФ; аэробный гликолиз, или окисление, – расщепление пирувата в митохондриях с участием кислорода до углекислого газа, воды и ресинтезом АТФ.) У не тренирующихся людей обычно быстрые волокна гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости быстрые мышечные волокна превращаются из гликолитических в промежуточные, а затем и в окислительные, и тогда они, не теряя в силе и скорости сокращения, станут неутомляемыми.

Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервных импульсов, которые имеют электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервные импульсы, посылаемые мозгом, имеют частоту ниже этого порога, ДЕ пассивна. Если нервные импульсы имеют пороговую для этой ДЕ величину или превышают ее, мышечные волокна активируются и начинают сокращаться. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствие двигательного режима, например в коме или при долгом нахождении в гипсе, даже медленные мышечные волокна теряют свои митохондрии и, соответственно, миоглобин и становятся белыми и гликолитическими.
Поэтому в настоящее время в спортивной науке считается неправильным говорить «тренировки, направленные на гипертрофию быстрых мышечных волокон» или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще десять лет назад это считалось допустимым даже в специализированных научных изданиях.
Сейчас если мы говорим о тренировочном воздействии на мышечное волокно (МВ), то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель – поднять максимальный вес в единичном повторении.
В видах спорта, требующих проявления выносливости, классификации совпадать не будут.
Для наглядности несколько утрированный, хотя теоритически вполне возможный, пример. Обратите внимание, что все цифры условные, и их не надо воспринимать буквально.
Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг – на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок. Соотношение волокон, предположим, следующее: 90 % – быстрые, 10 % – медленные. По окислительному потенциалу 75 % – гликолитические, 15 % – промежуточные и 10 % – окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по шесть повторений. Вес штанги достаточно большой, чтобы рекрутировать 75 % гликолитических волокон, а окислительный потенциал их настолько низок, что и шести повторений достаточно для необходимого закисления мышцы. Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ.
Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторения с околомаксимальным весом раз в 7–10 дней.
Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5 % гликолитических волокон, 70 % промежуточных и 25 % окислительных. То есть гликолитические стали промежуточными, кроме 5 % самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение, естественно, не изменилось, также 90 % быстрые и 10 % медленные. 200 кг он выжал на один раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал. 180 кг он выжал на 8 раз, а 150 кг – на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту, не давая мышцам закислиться, что значительно увеличило их функциональность.
Теперь нашему атлету для увеличения мышечной массы работа на шесть повторений практически ничего не даст. Она задействует в нужном режиме только 5 % оставшихся гликолитических волокон. Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И дополнительно включить в тренировку статодинамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25 %, и игнорировать их уже нецелесообразно.

Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала!

Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-азы, считается некорректным.

P.S. Не стоит бояться развивать выносливость. Изменение окислительного потенциала процесс обратимый. Т.е. если вы решите набирать мышечный объем в режиме шести повторений, то через месяц-полтора этот режим снова будет давать свои результаты, а организм избавится от "лишних" митохондрий. Но тогда упадет выносливость.
Какой режим выбирать, решать вам.

Мышцы или мускулы - важнейшая составляющая опорно-двигательного аппарата, обладающая сократительной способностью. Именно благодаря возможности мышечных тканей сокращаться, человек может выполнять всяческие движения, начиная с самых простых (моргание и улыбка) и заканчивая максимально тонкими (как у ювелиров) и энергичными (как у спортсменов). Функциональность мышечного скелета напрямую связана с составом его главных структурных единиц - мышечных волокон. Сегодня мы с вами рассмотрим структуру мышечных волокон, их классификацию и роль в двигательной активности человека.

Почему мышцы сокращаются

Волокна скелетных мышц соединяются со спинным мозгом посредством толстых нервных волокон. После попадания в мускул каждое из нервных волокон делится на сотни разветвлений, которые снабжают сотни мышечных волокон. Соединение между нервом и волокном мышечной ткани называют синапсом, или нервно-мышечным соединением. Примечательно, что на каждом мышечном волокне может формироваться только один синапс. При соответствующем нервном сигнале возникает потенциал действия, который передается по нервам от спинного мозга к мускулам.

От свойств мышечных волокон зависит то, как мускулатура адаптируется к повторяющимся сигналам. Именно типы волокон обуславливает предрасположенность спортсмена к той или иной тренировочной программе. Во время тренировки происходит гипертрофия мышечных волокон - увеличение их объема и массы. При этом важно понимать, что количество волокон не изменяется и обуславливается генетическими особенностями того или иного человека.

Состав

В состав мышечного волокна входят:

  1. Миофибриллы. Выполняют сократительную функцию.
  2. Митохондрии. Отвечают за продуцирование энергии.
  3. Ядра. Отвечают за регуляцию.
  4. Сарколемма. Представляет собой соединительнотканную оболочку.
  5. Ретикулум (саркоплазматический или эндоплазматический). Представляет собой депо кальция, который необходим для возбуждения миофибриллы.
  6. Капилляры. Отвечают за поставку кислорода и питательных веществ.

Типы мышечных волокон

Волокна скелетных мышц могут иметь различные механические и метаболические свойства. Классификация волокон основана на различии в максимальной скорости их сокращения (быстрые и медленные) и метаболическом пути, который используется ими для образования аденозинтрифосфата (АТФ) (окислительные и гликолитические). В целом мышечные волокна делятся на медленные окислительные и быстрые гликолитические.

Медленные окислительные

Тонкие волокна этого типа хорошо снабжаются кровью и содержат много миоглобина, придающего им красную окраску (поэтому их часто называют красными). Они также отличаются низким порогом активации мотонейрона, медленным сокращением и наличием большого количества крупных митохондрий, которые содержат ферменты окислительного фосфорилирования. Медленные мышечные волокна, по сравнению с быстрыми, содержат больше миозина и меньше фермента аденозинтрифосфатазы (АТФазы). Иннервация медленных окислительных волокон обеспечивается малыми альфа-мотонейронами спинного мозга. Из-за неспешного сокращения такие волокна хорошо приспособлены к длительной нагрузке.

Быстрые гликолитические

Толстые волокна этого типа отличаются высокой скоростью сокращения, большой силой и быстрой утомляемостью. Они хуже снабжаются кровью, нежели предыдущий тип, имеют меньше митохондрий, миоглобина и липидов. Этим обусловлена светлая окраска быстрых мышечных волокон, за которую их нарекли «белыми». В отличие от предыдущего вида они содержат в себе главным образом ферменты анаэробного окисления и миофибриллы, в состав которых входит небольшое количество миозина. Вместе с тем, этот миозин способен быстро сокращаться и лучше металлизировать АТФ. Кроме того, в быстрых волокнах более ярко выражено наличие саркоплазматического ретикулума. Так как сокращение и утомление этих волокон происходит быстро, они задействуются в кратковременной взрывной работе. Иннервация быстрых мышечных волокон осуществляется большими альфа-мотонейронами спинного мозга.

Быстрые волокна подразделяются на два типа:

  • IIa: быстрые окислительно-гликолитические. Их часто называют просто «быстрыми окислительными». Средние по толщине волокна обладают большей силой, чем волокна типа IIb, но быстрее утомляются и обладают способностью к выраженному сокращению. Источниками энергии для волокон этого типа служат как окислительные, так и анаэробные процессы.
  • IIb: быстрые гликолитические волокна. Обладают большими размерами, высоким порогом активации мотонейрона и быстрой утомляемостью. Активация происходит при кратковременных нагрузках, требующих большой силы. Данный тип волокон получает энергию через анаэробное окисление. Отличаются большим содержанием гликогена и малым содержанием митохондрий.

Кроме того, иногда выделяют еще один тип быстрых волокон - IIc. Волокна этого типа могут проявлять и окислительную, и гликолитическую функцию. Их доля в мускулах не превышает одного процента. В зависимости от типа нагрузок волокна типа IIc могут переходить в волокна других типов.

Быстрые или медленные

Принадлежность мышечных волокон к быстрым или медленным зависит от активности миозиновой АТФазы, которая обуславливает скорость сокращения мускулов. Активность указанного фермента наследуется, поэтому изменить соотношение быстрых и медленных волокон с помощью тренировок нельзя.

Благодаря АТФазе происходит высвобождение энергии, заключенной в АТФ. Энергии одной молекулы аденозинтрифосфата достаточно, чтобы миозиновые мостики сделали один поворот («гребок»). Скорость одиночного «гребка» у всех видов мускулов одинакова. В волокнах, содержащих высокоактивную АТФазу, гребок происходит быстрее, а значит за определенную единицу времени волокно сокращается большее количество раз.

В медленных окислительных волокнах, обладающих способностью к окислительному фосфорилированию, содержится много митохондрий. В таких волокнах в значительном количестве могут содержаться липиды, и в незначительном - гликоген. Основное количество АТФ, произведенного этими волокнами, прямо зависит от топливных молекул и снабжения кровеносной системы кислородом. Они окружены большим количеством капилляров и содержат в себе много миоглобина, увеличивающего поглощение кислорода тканями и способствующего небольшому накоплению кислорода внутри клеток. В быстрых волокнах митохондрий мало, но их концентрация гораздо большая, равно как и концентрация гликолитических ферментов и гликогена.

Гликолитические, промежуточные или окислительные

Как правило, гликолитические волокна больше в диаметре, нежели окислительные. Чем больше диаметр, тем большего растяжения они могут достичь и тем больше их сила. Классификация основана на окислительном потенциале мускула, то есть количестве митохондрий, содержащихся в мышечном волокне. Митохондриями называют клеточные органеллы, в которых глюкоза или жир распадаются на углекислый газ и воду, ресинтезируя при этом АТФ, которая, в свою очередь, ресинтезирует креатинфосфат. Ну а креатинфосфат необходим для ресинтеза миофибриллярных молекул АТФ, использующегося в мышечном сокращении. Вне митохондрий расщепление глюкозы до пирувата и ресинтез АТФ также возможно, однако в таком случае в мышечных тканях образуется молочная кислота, которая вызывает их утомление.

По описанному выше признаку, волокна мышечной ткани делятся на три группы:

  1. Окислительные. Содержание в них митохондрий настолько велико, что в процессе тренировки их прибавки не происходит.
  2. Промежуточные. Количество митохондрий в них снижено, и во время работы мускула в нем накапливается молочная кислота. Происходит это довольно медленно.
  3. Гликолитические. Содержат малое количество митохондрий, поэтому процесс анаэробного гликолиза с накоплением молочной кислоты является в них преобладающим.

Соотношение волокон

У людей, которые не занимаются спортом, как правило, быстрые волокна являются гликолитическими или промежуточными, а медленные - окислительными. Тем не менее при грамотных тренировках быстрые мышечные волокна могут переходить из гликолитических в промежуточные, а из промежуточных в окислительные. Речь идет о развитии выносливости. А при тренировках, нацеленных на развитие силы, промежуточные волокна переходят в гликолитические. При этом соотношение быстрых и медленных мышечных волокон предопределено генетически, поэтому практически не меняется путем тренировки. Возможен переход 1-3%, но не более.

Мускулы обладают разным процентным соотношением белых и красных волокон. Следовательно, скорость сокращения, сила и выносливость разных мышечных групп отличается. К примеру, икроножная мышца содержит больше быстрых волокон, которые придают ей способность к быстрому и сильному сокращению, используемому, например, во время прыжка. Вместе с тем, камбаловидная мышца, соседствующая с икроножной, наоборот, содержит больше медленных волокон, так как она отвечает за длительную активность ног.

Соотношение основных видов волокон мышечной ткани определяет спортивную предрасположенность разных людей. Именно поэтому не существует универсальных атлетов.

Высокопороговые и низкопороговые

Кроме всего прочего, мышечные волокна также подразделяются по уровню порога возбудимости. Мускул сокращается, когда на него воздействуют нервные импульсы, имеющие электрическую природу. Двигательная единица (ДЕ) состоит из: мотонейрона, аксона и совокупности мышечных волокон. Количество ДЕ в теле человека не меняется на протяжении всей жизни. Каждая из двигательных единиц имеет свой порог возбудимости. Если мозг посылает нервные импульсы с частотой ниже этого порога, значит ДЕ пассивна. Если же нервные импульсы имеют пороговую частоту, или превышают ее, то волокна мышц активируются и сокращаются. У низкопороговых ДЕ некрупные мотонейроны, тонкий аксон и иннервируемые медленные волокна, исчисляемые сотнями. Высокопороговые ДЕ отличаются крупными мотонейронами, толстым аксоном и тысячами иннервируемых быстрых волокон.

Таким образом, медленные окислительные волокна относятся к низкопороговым и возбуждаются при незначительной нагрузке. А быстрые волокна, соответственно, относятся к высокопороговым и активируются только при интенсивных нагрузках.

Миозин

Существенное различие разных видов мышечных волокон обуславливает значительную гетерогенность мышечных тканей и их способность к выполнению разнообразных функциональных задач. Биохимический и иммуногистохимический анализ скелетных мускулов показывает, что структурное и функциональное разнообразие мышечных волокон обуславливается широким спектром изоформ миозина. Миозином называется фибриллярный белок, выступающий одним из главных компонентов сократительных мышечных волокон. Он составляет от 40 до 60% общего количества мышечного белка в организме. При соединении миозина с актином (еще один мышечный белок) образуется актомиозин - основной элемент сократительной системы мускулов.

В состав молекулы миозина входит две тяжелых цепи (MyHC) и четыре легких (MyLC). Тяжелые цепи имеют несколько изоформ, свойства которых обуславливают силовые и скоростные показатели мышечных волокон. Наиболее важными считаются четыре изоформы: MyHCI, MyHCIIA, MyHCIIX/IID, и MyHCIIB. Каждая изоформа имеет специфическую скорость сокращения и позволяет развить определенное усилие. Волокна, в состав которых входит MyHCI, по сравнению с волокнами, содержащими другие формы тяжелой цепи миозина, медленнее сокращаются и развивают меньшее усилие. Наиболее быстрыми и сильными считаются волокна, содержащие MyHCIIB изоформу тяжелой цепи. За ними следует MyHCIIX и MyHCIIA форма.

Физическая активность может привести к весомым изменениям сократительных свойств мускулов. Принято считать, что при тренировке на выносливость увеличивается количество медленных изоформ миозина. Вместе с тем во время силовой тренировки происходит увеличение количества MyHCIIA и уменьшение MyHCIIX. Кроме того, считается, что у основной массы людей, активность которых ограничивается простыми бытовыми делами, волокна, содержащие миозин в форме MyHCIIX, крайне редко вовлекаются в работу. В процессе физической тренировки они начинают задействоваться и постепенно переходят в MyHCIIA форму. Дело в том, что волокна, содержащие IIA изоформу тяжелой цепи миозина, имеют большую выносливость, по сравнению волокнами IIX типа.

Во время тренировок выносливости или силы происходит весомое изменение гормонального фона скелетных мускулов, которое служит мощным сигналом, запускающим процесс изменения состава миозина в мускулах, подвергающихся нагрузке.

Заключение

Резюмируя вышесказанное, стоит отметить, что мышечные волокна являются главной структурной единицей мышечного скелета. Соотношение белых и красных волокон является генетическим фактором, равно как и общее количество волокон в мускуле. При правильной тренировке можно не только увеличить объем и массу мышечных волокон, но и добиться изменениях их гликолитических и окислительных свойств.



mob_info