Структурно функциональной единицей гладкой мышечной ткани является. Гистологическое строение мышечных тканей. Поперечнополосатые мышечные ткани

Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным, до 120 мм), диаметром 0,1 мм.

Мышечное волокно окружено оболочкой – сарколеммой, в которой под электронным микроскопом отчетливо выделяются 2 листка: внутренний – типичная плазмолемма, а наружный представляет собой тонкую соединительнотканную пластинку – базальную пластинку.

В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки – миосателлиты.

Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

Миосимпласта;

Клеток-миосателлитов;

Базальной пластинки.

Базалъная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы.

Клетки-миосателлиты являются камбиальными (ростковыми) элементами мышечных волокон и играют роль в процессах их физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток – миобластов.

Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. В миосимпласте содержится несколько тысяч (до 10 тыс.) продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабовыраженной зернистой эндоплазматической сети, пластинчатого комплекса и небольшое число митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов.

Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл, к которым относятся:

Миофибриллы;

Саркоплазматическая сеть;

Канальцы Т-системы.

Миофибриллы – сократительные элементы миосимпласта – в большом количестве (до 1–2 тыс.) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое число митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2–0,5 мкм.

Миофибриллы неоднородны по протяжению и подразделяются:



На темные (анизотропные), или А-диски, которые образованы более толстыми миофиламентами (10–12 нм), состоящими из белка миозина;

Светлые (изотропные), или I-диски, которые образованы тонкими миофиламентами (5–7 нм), состоящими из белка актина.

Темные и светлые диски всех миофибрилл располагаются на одном уровне и обусловливают поперечную исчерченность всего мышечного волокна.

Темные и светлые диски состоят из еще более тонких волоконец - протофибрилл, или миофиламентов.

Посередине I-диска поперечно актиновым миофиламентам проходит темная полоска – телофрагма, или Z-линия, посредине А-диска проходит менее выраженная М-линия, или мезофрагма.

Актиновые миофиламенты посередине I-диска скрепляются белками, составляющими Z-линию, свободными концами частично входят в А-диск между толстыми миофиламентами. При этом вокруг 1 миозинового филамента располагаются в актиновых.

При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А-диск, и в нем образуется светлая зона, или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между 2 Z-линиями, носит название саркомера и является структурно-функциональной единицей миофибриллы.

Саркомер включает в себя А-диск и расположенные по сторонам от него 2 половины 1-диска.

Следовательно, каждая миофибрилла представляет собой совокупность саркомеров.

Именно в саркомере осуществляется процесс сокращения.

Конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта актиновыми миофиламентами.



Структурные элементы саркомера в расслабленном состоянии можно, выразить формулой

Z + 1/21 + 1/2А + М + 1/2А + 1/21 + Z.

Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актинмиозиновых мостиков, посредством которых происходит втягивание актиновых миофиламентов в А-диски – укорочение саркомера. Для развития этого процесса необходимы 3 условия.

Наличие энергии в виде АТФ;

Наличие ионов кальция; наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях), в большом числе локализованных между миофибриллами.

Выполнение 2 последних условий осуществляется с помощью еще 2 специализированных органелл – саркоплазматической сети и Т-каналъцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. Она подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из 2 терминальных цистерн, соединенных полыми анастомозируюшими канальцами – L-каналъцами. При этом терминальные цистерны охватывают саркомер в области I-дисков, а канальцы – в области А-дисков.

В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы.

Таким образом, саркоплазматическая сеть не только является резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам. Они не являются самостоятельными структурными элементами и представляют собой трубчатые выпячивания плазмолеммы в саркоплазму.

Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах 1 пучка строго на одном уровне, обычно на уровне Z-полоски или несколько медиальнее - в области соединения актиновых и миозиновых миофиламентов. Следовательно, к каждому саркомеру подходят и окружают его 2 Т-канальца.

По сторонам от каждого Т-канальца располагаются 2 терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обусловливает выход из них ионов кальция и начало сокращения. Таким образом, функциональная роль Т-канальцев заключается в передаче биопотенциала с плазмолеммы на саркоплазматическую сеть.

Регенерация скелетной мышечной ткани, как и у других тканей, подразделяется на 2 типа – физиологическую и репаративную.

Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон, что выражается в увеличении их толщины и даже длины, увеличении числа органелл, главным образом миофибрилл, а также нарастании числа ядер, что в конечном счете проявляется увеличением функциональной способности мышечного волокна. Радиоизотопным методом установлено, что увеличение числа ядер в мышечных волокнах в условиях гипертрофии достигается за счет деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Увеличение числа миофибрилл осуществляется посредством синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних миофибрилл. Кроме того, возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык предшествующим миофибриллам, чем достигается их удлинение.

Саркоплазматическая сеть и Т-канальцы в гипертрофирующемся волокне образуются за счет разрастания предшествующих элементов.

При определенных видах мышечной тренировки может формироваться Преимущественно красный тип мышечных волокон (у стайеров) или белый тип мышечных волокон (у спринтеров).

Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1–2 года), что обусловлено прежде всего усилением нервной стимуляции.

В старческом возрасте, а также в условиях малой мышечной нагрузки

наступают атрофия специальных и общих органелл, истончение мышечных волокон и снижение их функциональной способности.

Репаративная регенерация развивается после повреждения мышечных волокон.

Способ регенерации зависит от величины дефекта:

При значительных повреждениях на протяжении мышечного волокна миосателлиты в области повреждения и в прилежащих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где выстраиваются в цепочки, формируя миотрубку. Последующая дифференцировка миотрубки приводит к восполнению дефекта и восстановлению целостности мышечного волокна;

В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл образуются мышечные

почки, которые растут навстречу друг другу, а затем сливаются, приводя к закрытию дефекта.

Репаративная регенераиия и восстановление целостности мышечных волокон могут осуществляться лишь в следующих случаях.

Во-первых, при сохраненной двигательной иннервации мышечныхволокон;

Во-вторых, если в область повреждения не попадают элементы соединительной ткани (фибробласты), – иначе на месте дефекта мышечного волокна развивается соединительнотканный рубец.

Советским ученым А.Н. Студитским доказана возможность амтотрансплантаиии скелетной мышечной ткани и даже целых мышц при соблюдении определенных условий:

· механическое измельчение мышечной ткани трансплантата с целью растормаживания клеток-сателлитов и последующей их пролиферации;

· помещение измельченной ткани в фасциальное ложе;

· подшивание двигательного нервного волокна к измельченному трансплантату;

· наличие сократительных движений мышц-антагонистов и синергистов.

2. Скелетные мышцы получают следующую иннервацию:

· двигательную (эфферентную);

· чувствительную (афферентную);

· трофическую (вегетативную).

Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы – от двигательных нейронов определенных черепных нервов.

К каждому мышечному волокну подходит или ответвление от аксона мотонейрона, или же весь аксон. В мышцах, обеспечивающих тонкие координированные движения (мышцы кистей, предплечий, шеи), каждое мышечное волокно иннервируется 1 мотонейроном. В мышцах, обеспечивающих преимущественно поддержание позы, десятки и даже

сотни мышечных волокон получают двигательную иннервацию от 1 мотонейрона посредством разветвления его аксона.

Двигательное нервное волокно, подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксо-мышечный синапс или моторную бляшку. Под влиянием нервного импульса волна деполяризации с нервного окончания передается на плазмолемму миосимпласта, распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обусловливая выход ионов кальция и начало процесса сокращения мышечного волокна.

Чувствительная (афферентная) иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев, посредством разнообразных рецепторных окончаний дендритов этих клеток.

Рецепторные окончания скелетных мыши можно разделить на 2 группы: специфические рецепторные приборы, характерные только для скелетных мышц:

Мышечное веретено;

Сухожильный орган Гольджи;

неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани:

Эндомизия;

Перимизия;

Эпимизия.

Мышечные веретена – довольно сложно устроенные инкапсулированные приборы. В каждой мышце содержится от нескольких единиц до нескольких десятков и даже сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но и 10–12 специфических мышечных волокон – интрафузальных, окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузальным) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении.

Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движений (например, при ходьбе).

Трофическая (вегетативная) иннервация обеспечивается вегетативной нервной системой (ВНС) (ее симпатической частью) и осуществляется в основном опосредованно, посредством иннервации сосудов.

Скелетные мышцы богато снабжаются кровью. В рыхлой соединительной ткани перимизия в большом количестве содержатся артерии и вены, артериолы, венулы и артериоло-венулярные анастомозы. В эндомизии располагаются только капилляры, преимущественно узкие (4,5–7 мкм), которые и обеспечивают трофику мышечного волокна. Мышечное волокно вместе с окружающими его капиллярами и двигательным окончанием составляет мион.

В мышцах содержится большое количество артериоло-венулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.

    Общая характеристика мышечных тканей. Классификация.

    Морфофункциональная характеристика. Регенерация мышечных тканей.

а) поперечно-полосатой скелетной мышечной ткани;

б) поперечно-полосатой сердечной мышечной ткани;

в) гладкой мышечной ткани.

1. Общая характеристика мышечных тканей. Классификация.

Мышечные ткани обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения, при сокращении выделяется большое количество тепла, и, таким образом, мышечные ткани участвуют в терморегуляции организма.

Свойством сократимости обладают практически все виды клеток благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5–7 нм), состоящих из сократительных белков – актина, миозина, тропомиозина и др. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток.

Любая разновидность мышечной ткани помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако функционально ведущими элементами мышечных тканей являются мышечные клетки, или мышечные волокна.

Мышечные ткани классифицируются по строению, источникам происхождения и иннервации, по функциональным особенностям.

Основные группы мышечных тканей по строению:

    гладкая (неисчерченная) – мезенхимная; включает специальную:

    нейрального происхождения;

    эпидермального происхождения;

    поперечно-полосатая (исчерченная):

скелетная;

сердечная.

Каждая из 2 групп, в свою очередь, подразделяется на разновидности как по источникам происхождения, так и по строению и функциональным особенностям.

Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы.

К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения - миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.

Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную.

Обе эти разновидности развиваются из разных частей мезодермы:

  • скелетная – из миотомов сомитов;

    сердечная - из висцерального листка спланхнотома.

Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу.

Гладкая мышечная ткань внутренних органов и радужной оболочки -гладкомышечная клетка – миоцит;

    специальная эпидермального происхождения – корзинчатый миоэпителиоцит-

    сердечная – кардиомиоцит;

    скелетная– мышечное волокно.

2. Морфофункциональная характеристика

а) поперечно-полосатой скелетной мышечной ткани

Структурно-функциональной единицей поперечно-полосатой мышечной ткани является мышечное волокно.

Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным, до 120 мм), диаметром 0,1 мм.

Мышечное волокно окружено оболочкой – сарколеммой, в которой под электронным микроскопом отчетливо выделяются 2 листка: внутренний – типичная плазмолемма, а наружный представляет собой тонкую соединительнотканную пластинку – базальную пластинку.

В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки – миосателлиты.

Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

    миосимпласта;

    клеток-миосателлитов;

    базальной пластинки.

Базалъная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы.

Клетки-миосателлиты являются камбиальными (ростковыми) элементами мышечных волокон и играют роль в процессах их физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток – миобластов.

Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. В миосимпласте содержится несколько тысяч (до 10 тыс.) продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабовыраженной зернистой эндоплазматической сети, пластинчатого комплекса и небольшое число митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов.

Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл, к которым относятся:

    миофибриллы;

    саркоплазматическая сеть;

    канальцы Т-системы.

Миофибриллы – сократительные элементы миосимпласта – в большом количестве (до 1–2 тыс.) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое число митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2–0,5 мкм.

Миофибриллы неоднородны по протяжению и подразделяются:

    на темные (анизотропные), или А-диски, которые образованы более толстыми миофиламентами (10–12 нм), состоящими из белка миозина;

    светлые (изотропные), или I-диски, которые образованы тонкими миофиламентами (5–7 нм), состоящими из белка актина.

Темные и светлые диски всех миофибрилл располагаются на одном уровне и обусловливают поперечную исчерченность всего мышечного волокна.

Темные и светлые диски состоят из еще более тонких волоконец - протофибрилл, или миофиламентов.

Посередине I-диска поперечно актиновым миофиламентам проходит темная полоска – телофрагма, или Z-линия, посредине А-диска проходит менее выраженная М-линия, или мезофрагма.

Актиновые миофиламенты посередине I-диска скрепляются белками, составляющими Z-линию, свободными концами частично входят в А-диск между толстыми миофиламентами. При этом вокруг 1 миозинового филамента располагаются в актиновых.

При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А-диск, и в нем образуется светлая зона, или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между 2 Z-линиями, носит название саркомера и является структурно-функциональной единицей миофибриллы.

Саркомер включает в себя А-диск и расположенные по сторонам от него 2 половины 1-диска.

Следовательно, каждая миофибрилла представляет собой совокупность саркомеров.

Именно в саркомере осуществляется процесс сокращения.

Конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта актиновыми миофиламентами.

Структурные элементы саркомера в расслабленном состоянии можно, выразить формулой

Z + 1/21 + 1/2А + М + 1/2А + 1/21 + Z.

Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актинмиозиновых мостиков, посредством которых происходит втягивание актиновых миофиламентов в А-диски – укорочение саркомера. Для развития этого процесса необходимы 3 условия.

Наличие энергии в виде АТФ;

    наличие ионов кальция; наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях), в большом числе локализованных между миофибриллами.

Выполнение 2 последних условий осуществляется с помощью еще 2 специализированных органелл – саркоплазматической сети и Т-каналъцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. Она подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из 2 терминальных цистерн, соединенных полыми анастомозируюшими канальцами – L-каналъцами. При этом терминальные цистерны охватывают саркомер в области I-дисков, а канальцы – в области А-дисков.

В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы.

Таким образом, саркоплазматическая сеть не только является резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам. Они не являются самостоятельными структурными элементами и представляют собой трубчатые выпячивания плазмолеммы в саркоплазму.

Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах 1 пучка строго на одном уровне, обычно на уровне Z-полоски или несколько медиальнее - в области соединения актиновых и миозиновых миофиламентов. Следовательно, к каждому саркомеру подходят и окружают его 2 Т-канальца.

По сторонам от каждого Т-канальца располагаются 2 терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обусловливает выход из них ионов кальция и начало сокращения. Таким образом, функциональная роль Т-канальцев заключается в передаче биопотенциала с плазмолеммы на саркоплазматическую сеть.

Регенерация скелетной мышечной ткани, как и у других тканей, подразделяется на 2 типа – физиологическую и репаративную.

Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон, что выражается в увеличении их толщины и даже длины, увеличении числа органелл, главным образом миофибрилл, а также нарастании числа ядер, что в конечном счете проявляется увеличением функциональной способности мышечного волокна. Радиоизотопным методом установлено, что увеличение числа ядер в мышечных волокнах в условиях гипертрофии достигается за счет деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Увеличение числа миофибрилл осуществляется посредством синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних миофибрилл. Кроме того, возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык предшествующим миофибриллам, чем достигается их удлинение.

Саркоплазматическая сеть и Т-канальцы в гипертрофирующемся волокне образуются за счет разрастания предшествующих элементов.

При определенных видах мышечной тренировки может формироваться Преимущественно красный тип мышечных волокон (у стайеров) или белый тип мышечных волокон (у спринтеров).

Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1–2 года), что обусловлено прежде всего усилением нервной стимуляции.

В старческом возрасте, а также в условиях малой мышечной нагрузки

наступают атрофия специальных и общих органелл, истончение мышечных волокон и снижение их функциональной способности.

Репаративная регенерация развивается после повреждения мышечных волокон.

Способ регенерации зависит от величины дефекта:

При значительных повреждениях на протяжении мышечного волокна миосателлиты в области повреждения и в прилежащих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где выстраиваются в цепочки, формируя миотрубку. Последующая дифференцировка миотрубки приводит к восполнению дефекта и восстановлению целостности мышечного волокна;

В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл образуются мышечные

почки, которые растут навстречу друг другу, а затем сливаются, приводя к закрытию дефекта.

Репаративная регенераиия и восстановление целостности мышечных волокон могут осуществляться лишь в следующих случаях.

    во-первых, при сохраненной двигательной иннервации мышечныхволокон;

    во-вторых, если в область повреждения не попадают элементы соединительной ткани (фибробласты), – иначе на месте дефекта мышечного волокна развивается соединительнотканный рубец.

Советским ученым А.Н. Студитским доказана возможность амтотрансплантаиии скелетной мышечной ткани и даже целых мышц при соблюдении определенных условий:

    механическое измельчение мышечной ткани трансплантата с целью растормаживания клеток-сателлитов и последующей их пролиферации;

    помещение измельченной ткани в фасциальное ложе;

    подшивание двигательного нервного волокна к измельченному трансплантату;

    наличие сократительных движений мышц-антагонистов и синергистов.

2. Скелетные мышцы получают следующую иннервацию:

    двигательную (эфферентную);

    чувствительную (афферентную);

    трофическую (вегетативную).

Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы – от двигательных нейронов определенных черепных нервов.

К каждому мышечному волокну подходит или ответвление от аксона мотонейрона, или же весь аксон. В мышцах, обеспечивающих тонкие координированные движения (мышцы кистей, предплечий, шеи), каждое мышечное волокно иннервируется 1 мотонейроном. В мышцах, обеспечивающих преимущественно поддержание позы, десятки и даже

сотни мышечных волокон получают двигательную иннервацию от 1 мотонейрона посредством разветвления его аксона.

Двигательное нервное волокно, подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксо-мышечный синапс или моторную бляшку. Под влиянием нервного импульса волна деполяризации с нервного окончания передается на плазмолемму миосимпласта, распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обусловливая выход ионов кальция и начало процесса сокращения мышечного волокна.

Чувствительная (афферентная) иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев, посредством разнообразных рецепторных окончаний дендритов этих клеток.

Рецепторные окончания скелетных мыши можно разделить на 2 группы: специфические рецепторные приборы, характерные только для скелетных мышц:

    мышечное веретено;

    сухожильный орган Гольджи;

неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани:

    эндомизия;

    перимизия;

    эпимизия.

Мышечные веретена – довольно сложно устроенные инкапсулированные приборы. В каждой мышце содержится от нескольких единиц до нескольких десятков и даже сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но и 10–12 специфических мышечных волокон – интрафузальных, окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузальным) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении.

Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движений (например, при ходьбе).

Трофическая (вегетативная) иннервация обеспечивается вегетативной нервной системой (ВНС) (ее симпатической частью) и осуществляется в основном опосредованно, посредством иннервации сосудов.

Скелетные мышцы богато снабжаются кровью. В рыхлой соединительной ткани перимизия в большом количестве содержатся артерии и вены, артериолы, венулы и артериоло-венулярные анастомозы. В эндомизии располагаются только капилляры, преимущественно узкие (4,5–7 мкм), которые и обеспечивают трофику мышечного волокна. Мышечное волокно вместе с окружающими его капиллярами и двигательным окончанием составляет мион.

В мышцах содержится большое количество артериоло-венулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.

б) поперечно-полосатая сердечная мышечная ткань

Структурно-функциональной единицей сердечной поперечно-полосатой мышечной ткани является клетка – кардиомиоцит .

По строению и функциям кардиомиоииты подразделяются на 2 основные группы:

    типичные, или сократительные, кардиомиоциты, образующие своей совокупностью миокард;

    атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся, в свою очередь, на 3 разновидности.

Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50–120 мкм в длину, шириной 15–20 мкм, покрытую снаружи базальной пластинкой. В центре локализуется обычно 1 ядро. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии.

В отличие от скелетной мышечной ткани миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а по существу сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и поэтому поперечная исчерченность в кардиомиоцитах выражена не столь отчетливо, как в скелетных мышечных волокнах.

Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы углублениями не только плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцита практически не отличается от такового в скелетных мышечных волокнах.

Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть – функциональный синцитий. Наличие щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках.

Области контактов соседних кардиомиоцитов носят название вставочных дисков, хотя фактически никаких дополнительных структур (дисков) между кардиомиоцитами нет: вставочные диски – это места V контактов цитолеммы соседних кардйомиоцитов, включающие в себя простые, десмосомные и щелевидные контакты.

Обычно во вставочных дисках различают поперечный и продольный фрагменты.

В области поперечных фрагментов имеются расширенные десмосомные соединения. В этих же местах с внутренней стороны плазмолемм прикрепляются актиновые филаменты саркомеров.

В области продольных фрагментов локализуются щелевидные контакты.

Посредством вставочных дисков обеспечивается как механическая, так и метаболическая (прежде всего ионная) связь кардиомиоцитов.

Сократительные кардиомиоциты предсердий и желудочков несколько различаются по морфологии и функциям.

Кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальцы, а вместо них под плазмолеммой выявляются в большом числе везикулы и кавеолы – аналоги Т-канальцев. Кроме того, в саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы, состоящие из гликопротеиновых комплексов, Л Выделяясь из кардйомиоцитов в кровь предсердий, эти вещества влияют на уровень давления крови в сердце и сосудах, а также препятствуют образованию тромбов в предсердиях. Следовательно, предсердные кардиомиоциты кроме сократительной обладают и секреторной функцией.

В желудочковых кардиомиоцитах более выражены сократительные элементы, а секреторные гранулы отсутствуют.

Вторая разновидность кардиомиоцитов – атипичные кардиомиоциты .

Они образуют проводящую систему сердца, в которую входят:

синусо-предсердный узел;

предсердно-желудочковый узел;

предсердно-желудочковый пучок (пучок Гиса),

ствол, правая и левая

концевые разветвления ножек – волокна Пуркинье.

Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты По своей морфологии атипичные кардиомиоииты отличаются от типичных рядом особенностей: они крупнее (длина 100 мкм, толщина 50 мкм);

в цитоплазме содержится мало миофибрилл, которые расположены неупорядоченно, и поэтому атипичные кардиомиоциты не имеют поперечной исчерченности; плазмолемма не образует Т-канальцев;

во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.

Атипичные кардиомиоииты различных отделов проводящей системы ото-

основные разновидности:

Р-клетки (пейсмейкеры) - водители ритма (I тип);

переходные клетки (II тип);

клетки пучка Гиса и волокон Пуркинье (III тип).

Клетки I типа (Р-клетки,) составляют основу синусо-предсердного узла, а также в небольшом количестве содержатся в атриовентрикуляр-ном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биопотенциалы и передавать их на переходные клетки (II типа), а последние передают импульсы на клетки III типа, от которых биопотенциалы передаются на сократительные кардиомиоциты.

Источники развития кардиомиоцитов - миоэпителиалъные пластинки, представляющие собой определенные участки висцеральных листков спланхнотома, а конкретнее, из целомического эпителия этих участков.

Биопотеншалы сократительные кардиомиоииты получают из 2 источников:

проводящей системы сердца (прежде всего из синусо-предсердного узла);

ВНС (из ее симпатической и парасимпатической части).

Регенерация сердечной мышечной ткани отличается тем, что кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическаярегенерация). Естественно, что сократительная функция в этих участках отсутствует.

Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.

в) гладкая мышечная ткань

Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит.

Представляет собой чаше всего веретенообразную клетку (длиной 20– 500 мкм, диаметром 5-8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр.

В цитоплазме содержатся толстые (17 нм) миозиновые и тонкие (7 нм) актиновые миофиламенты, которые располагаются в основном параллельно друг другу вдоль оси миоцита и не образуют А- и I-диски, чем и объясняется отсутствие поперечной исчерченности миоцитов. В цитоплазме миоцитов и на внутренней поверхности плазмолеммы встречаются многочисленные плотные тельца, к которым прикрепляются актиновые, миозиновые, а также промежуточные филаменты. Плазмолемма образует небольшие углубления – кавеолы, которые рассматриваются как аналоги Т-канальцев. Под плазмолеммой локализуются многочисленные везикулы, которые вместе с тонкими канальцами цитоплазмы являются элементами саркоплазматической сети.

Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофила-ментов вдоль миозиновых.

Для такого взаимодействия необходимы энергия в виде АТФ, ионы кальция и наличие биопотенциала. Биопотенциалы поступают от эфферентных окончаний вегетативных нервных волокон непосредственно На миоциты или опосредованно от соседних клеток через щелевидные Контакты и передаются через кавеолы на элементы саркоплазматической сети, обусловливая выход из них ионов кальция в саркоплазму. Под влиянием ионов кальция развиваются механизмы взаимодействия между актиновыми и миозиновыми филаментами, аналогичные тем, которые происходят в саркомерах скелетных мышечных волокон, В результате чего происходит скольжение названных миофиламентов и перемещение плотных телец в цитоплазме. В миоцитах кроме актиновых и миозиновых филаментов имеются еще промежуточные, которые одним концом прикрепляются к цитоплазматическим плотным Тельцам, а другим – к прикрепительным тельцам на плазмолемме и Таким образом передают усилия взаимодействия актиновых и миозиновых филаментов на сарколемму миоцита, чем и достигается его укорочение.

Миоциты окружены снаружи рыхлой волокнистой соединительной тканью – эндомизием и связаны друг с другом боковыми поверхностями.

В области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению.

Цепь миоцитов, объединенных механической и метаболической связью, составляет функциональное мышечное волокно. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения.

Эфферентная иннервация гладкой мышечной ткани осуществляется ВНС. При этом терминальные веточки аксонов эфферентных вегетативных нейронов, проходя по поверхности нескольких миоцитов, образуют на них небольшие варикозные утолщения, которые несколько прогибают плазмолемму и образуют мионевральные синапсы. При поступлении нервных импульсов в синаптическую щель выделяются медиаторы (ацетилхолин или норадреналин), и обусловливают деполяризацию мембран миоцитов и последующее их сокращение. Через щелевидные контакты биопотенциалы переходят из одного миоцита на другой, что сопровождается возбуждением и сокращением и тех гладкомышечных клеток, которые не содержат нервных окончаний. Возбуждение и сокращение миоцитов обычно продолжительны и обеспечивают тоническое сокращение гладкой мышечной ткани сосудов и полых внутренних органов, в том числе гладкомышечных сфинктеров. В этих органах содержатся и многочисленные рецепторные окончания в виде кустиков, деревцев или диффузных полей.

Регенерация гладкой мышечной ткани осуществляется несколькими способами:

    посредством внутриклеточной регенерации гипертрофии при усилении функциональной нагрузки;

    посредством митотического деления миоцитов при их повреждении (репаративная регенерация);

    посредством дифференцировки из камбиальных элементов – из адвентициальных клеток и миофибробластов.

Специальные гладкомышечные ткани нейрального происхождения развиваются из нейроэктодермы, из краев стенки глазного бокала, являющегося выпячиванием промежуточного мозга. Из этого источника развиваются миоциты, которые образуют 2 мышцы радужной оболочки глаза – мышцу, суживающую зрачок, и мышцу, расширяющую зрачок. По своей морфологии миоциты радужной оболочки не отличаются oт мезенхимных миоцитов, однако каждый миоцит получает вегетативную эфферентную иннервацию (мышца, расширяющая зрачок, – симпатическую, мышца, суживающая зрачок, – парасимпатическую). Благодаря этому названные мышцы сокращаются быстро и координирование, в зависимости от мощности светового пучка. Миоциты эпидермального происхождения развиваются из кожной эктодермы и представляют собой не типичные веретеновидные, а клетки звездчатой формы - миоэпителиальные клетки, располагающиеся на концевых отделах слюнных, молочных, слезных и потовых желез снаружи от секреторных клеток.

В своих отростках миоэпителиальные клетки содержат актиновые и миозиновые филаменты, благодаря взаимодействию которых отросла клеток сокращаются и способствуют выделению секрета из концевых отделов и мелких протоков названных желез в более крупные протоки. Эфферентную иннервацию получают также из вегетативного отдел, нервной системы.

1. Виды мышечной ткани Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5-7 нм), состоящих из сократительных белков - актина, миозина, тропомиозина и других. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани , которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения при сокращении выделяется большое количество тепла, а, следовательно, мышечные ткани участвуют в терморегуляции организма.
Мышечные ткани неодинаковы по строению , источникам происхождения и иннервации , по функциональным особенностям . Наконец, следует отметить, что любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна .
Классификация мышечных тканей:

  • гладкая (неисчерченная) - мезенхимная;
  • специальная - нейрального происхождения и эпидермального происхождения;
  • поперечно-полосатая (исчерченная ):
  • скелетная;
  • сердечная.
Как видно из представленной классификации мышечная ткань подразделяется по строению на две основные группы - гладкую и поперечно-полосатую. Каждая из двух групп в свою очередь подразделяется на разновидности, как по источникам происхождения, так и по строению и функциональным особенностям.
Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы.
К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения - миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.
Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются нетолько из мезодермы, но из разных ее частей:
  • скелетная - из миотомов сомитов;
  • сердечная - из висцерального листка спланхнотома.
Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка - миоцит; специальной мышечной ткани эпидермального происхождения - корзинчатый миоэпителиоцит ; сердечной мышечной ткани - кардиомиоцит; скелетной мышечной ткани - мышечное волокно.

2. Организация поперечно-полосатой скелетной мышечной ткани Структурно-функциональной единицей поперечно полосатой мышечной ткани является мышечное волокно . Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 мм до 40 мм (а по некоторым данным до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой - сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний - является типичной плазмолеммой, а наружный представляет собой тонкую соединительнотканную пластинку - базальную пластинку. В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки - миосателлиты. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

  • миосимпласта;
  • клеток миосателлитов;
  • базальной пластинки.
Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы.
Клетки миосателлиты являются камбиальными (ростковыми) элементами мышечных волокон и играют роль в процессах их физиологической и репаративной регенерации.
Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток - миобластов. Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. В миосимпласте содержится несколько тысяч (до 10 000) продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабовыраженной зернистой эндоплазматической сети, пластинчатого комплекса и небольшое число митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов.
Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл, к которым относятся :
  • миофибриллы;
  • саркоплазматическая сеть;
  • канальцы Т-системы.
Миофибриллы - сократительные элементы миосимпласта - в большом количестве (до 1000-2000) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое число митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2-0,5 мкм.
По своему строению миофибриллы неоднородны по протяжению и подразделяются на:
  • темные (анизотропные) или А-диски , которые образованы более толстыми миофиламентами (10-12 нм), состоящими из белка миозина;
  • и светлые (изотропные) или I-диски , которые образованы тонкими миофиламентами (5-7 нм), состоящими из белка актина.
Темные и светлые диски всех миофибрилл располагаются на одном уровне и обуславливают поперечную исчерченность всего мышечного волокна. Темные и светлые диски в свою очередь состоят из еще более тонких волоконец - протофибрилл или миофиламентов . Посредине I-диска поперечно актиновым миофиламентам проходит темная полоска - телофрагма или Z-линия, посредине А-диска проходит менее выраженная М-линия или мезофрагма. Актиновые миофиламенты по средине I-диска скрепляются белками, составляющими Z-линию, свободными концами частично входит в А-диск между толстыми миофиламентами. При этом, вокруг одного миозинового филамента располагаются 6 актиновых. При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А-диск и в нем образуется светлая зона или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.
Участок миофибриллы, расположенный между двумя Z-линиями носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляется процесс сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта актиновыми миофиламентами. Структурные элементы саркомера в расслабленном состоянии можно выразить формулой :
Z+1/2I+1/2A+M+1/2A+1/2I+Z.

3. Мышечные сокращения Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актин-миозиновых мостиков , посредством которых происходит втягивание актиновых миофиламентов в А-диски укорочение саркомера. Для развития этого процесса необходимы три условия:

  • наличие энергии в виде АТФ;
  • наличие ионов кальция;
  • наличие биопотенциала.
АТФ образуется в саркосомах (митохондриях) в большом числе локализованных между миофибриллами. Выполнение двух последних условий осуществляется с помощью еще двух специализированных органелл - саркоплазматической сети и Т-канальцев .
Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн , соединенных полыми анастомозирующими канальцами - L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-дисков, а канальцы - в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети, выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы. Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.
Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам , которые не являются самостоятельными структурными элементами.
Они представляют собой трубчатые выпячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на одном уровне, обычно на уровне Z-полоски или несколько медиальнее - в области соединения актиновых и миозиновых миофиламентов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обуславливает выход из них ионов кальция и начало сокращения. Таким образом, функциональная роль Т-канальцев заключается в передаче биопотенциала с плазмолеммы на саркоплазматическую сеть.
Для взаимодействия актиновых и миозиновых миофиламентов и последующего сокращения кроме ионов кальция необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.
Процесс взаимодействия актиновых и миозиновых филаментов упрощенно можно представить в следующем виде. Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ, с образованием АДФ и энергии. Благодаря выделившейся энергии устанавливаются мостики между актином и миозином (а конкретнее, образуются мостики между головками белка миозина и определенными точками на актиновом филаменте) и за счет укорочения этих мостиков происходит подтягивание актиновых филаментов между миозиновыми. Затем эти связи распадаются (опять же с использованием энергии) и головки миозина образуют новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предидущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации ионов кальция вблизи миофиламентов и от содержания АТФ. После смерти организма АТФ в саркосомах не образуется, ее остатки расходуются на образование актин-миозиновых мостиков, а на распад уже не хватает, следствием чего наступает посмертное окоченение мышц, которое прекращается после аутолиза(распада) тканевых элементов.
При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоски и I-диски, а формула саркомера может быть выражена в следующем виде:
Z+1/2IA+M+1/2AI+Z.
При частичном сокращении формулу саркомера можно представить в следующем виде:
Z+1/nI+1/nIA+1/2H+M+1/2H+1/nAJ+1/nI+Z.
Одновременное содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом, на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в углубления складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров. Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых мышечных волокон, вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

4. Типы мышечных волокон В мышечной ткани различают два основных типа мышечных вол окон , между которыми имеются промежуточные, отличающиеся между собой, прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени - структурными особенностями.

  • Волокна I типа - красные мышечные волокна - характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что и придает им красный цвет), большим числом саркосом, высокой активностью в них сукцинатдегидрогеназы (СДГ), высокой активностью АТФ-азы медленного типа. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью;
  • Волокна II типа - белые мышечные волокна - характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-базы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения. Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различными сочетаниями названных включений и разной активностью перечисленных ферментов.
Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов и нервов. Мышца - это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань . Поэтому не следует рассматривать как синонимы понятия мышечная ткань и мышца.
Волокнистая соединительная ткань образует прослойки в мышце:
  • эндомизий;
  • перимизий;
  • эпимизий;
  • а также сухожилия.
Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна. Коллагеновые и ретикулярные волокна эндомизия проникают в базальную пластинку мышечного волокна, тесно с ним связаны и передают силы сокращения волокна на точки скелета.
Перимизий окружает несколько мышечных волокон, собранных в пучки. В нем содержатся более крупные сосуды (артерии и вены, а также артериоло-венулярные анастомозы).
Эпимизий или фасция окружает всю мышцу, способствует функционированию мышцы, как органа. Любая мышца содержит все типы мышечных волокон в различном количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные волокна. В мышцах, обеспечивающих движение пальцев и кистей, преобладают белые или переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации. Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое и наоборот приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

В статье мы рассмотрим виды мышечных тканей. Это очень важная тема в биологии, ведь каждый должен знать, как функционируют наши мышцы. Они представляют собой сложную систему, изучение которой, надеемся, вам будет интересно. А помогут лучше представить себе виды мышечной ткани картинки, которые вы найдете в этой статье. Прежде всего, дадим определение, которое необходимо при изучении данной темы.

Это особая группа и животных, основной функцией которой является ее сокращение, обусловливающее перемещение организма или составляющих его частей в пространстве. Данной функции соответствует строение основных элементов, из которых состоят различные виды мышечных тканей. Элементы эти имеют продольную и удлиненную ориентацию миофибрилл, включающих в свой состав - миозин и актин. Мышечная ткань, как и эпителиальная, это сборная тканевая группа, так как основные ее элементы развиваются из эмбриональных зачатков.

Сокращение мышечной ткани

Клетки ее, так же как и нервные, при воздействии электрических и химических импульсов могут возбуждаться. Способность их сокращаться (укорачиваться) в ответ на действие того или иного стимула связана с наличием миофибрилл, особых белковых структур, каждая из которых состоит из микрофиламентов, коротких белковых волокон. В свою очередь, они подразделяются на миозиновые (более толстые) и актиновые (тонкие) волокна. В ответ на нервное раздражение сокращаются различные виды мышечных тканей. Сокращение к мышце передается по нервному отростку через нейромедиатор, которым является ацетилхолин. Мышечные клетки в организме осуществляют энергосберегающие функции, так как расходуемая при сокращении различных мышц энергия выделяется затем в виде тепла. Именно поэтому, когда организм подвержен охлаждению, возникает дрожь. Это не что иное, как частые сокращения мышц.

Можно выделить следующие виды мышечных тканей, в зависимости от того, какое строение имеет сократительный аппарат: гладкую и поперечнополосатую. Они состоят из отличающихся по строению гистогенетических типов.

Мышечная ткань поперечнополосатая

Клетки миотомов, которые образуются из дорсальной мезодермы, являются источником ее развития. Эта ткань состоит из удлиненных имеющих вид цилиндров, концы которых заострены. 12 см в длину и 80 мкм в диаметре достигают эти образования. Симпласты (многоядерные образования) содержатся в центре мышечных волокон. Снаружи к ним прилегают клетки под названием "миосателлиты". Сарколеммой ограничены волокна. Она образуется плазмолеммой симпласт и базальной мембраной. Под базальной мембраной волокна располагаются миосателлиотоциты - так, что плазмолеммы симпласт касается их плазмолемма. Данные клетки являются камбиальным резервом мышечной скелетной ткани, и именно за счет него осуществляется регенерация волокон. Миосимпласты, кроме плазмолеммы, включают в себя также саркоплазму (цитоплазму) и расположенные по периферии многочисленные ядра.

Значение поперечнополосатой мышечной ткани

Описывая виды мышечной ткани, следует отметить, что поперечнополосатая является исполнительным аппаратом всей двигательной системы. Она формирует Кроме того, этот вид ткани входит в структуру внутренних органов, таких как глотка, язык, сердце, верхний отдел пищевода и др. Общая масса ее у взрослого человека составляет до 40% от массы тела, а у пожилых людей, а также новорожденных, ее доля - 20-30%.

Особенности поперечнополосатой мышечной ткани

Сокращение данного вида мышечной ткани, как правило, можно производить с участием сознания. Она обладает несколько большим быстродействием по сравнению с гладкой. Как вы видите, виды мышечной ткани отличаются (о гладкой мы поговорим совсем скоро и отметим некоторые другие различия между ними). В поперечнополосатых мышцах нервные окончания воспринимают информацию о текущем состоянии мышечной ткани, а затем передают ее по афферентным волокнам в нервные центры, ответственные за регуляцию двигательных систем. Управляющие сигналы поступают от регуляторов в виде нервных импульсов по двигательным или вегетативным эфферентным нервным волокнам.

Гладкая мышечная ткань

Продолжая описывать виды мышечных тканей человека, переходим к гладкой. Она формируется веретенообразными клетками, длина которых составляет от 15 до 500 мкм, а диаметр находится в промежутке от 2 до 10 мкм. В отличие от волокон мышцы поперечнополосатой, эти клетки имеют одно ядро. Кроме того, у них нет поперечной исчерченности.

Значение гладкой мышечной ткани

От сократительной функции этого вида мышечной ткани зависит функционирование всех систем организма, поскольку она входит в структуру каждой из них. Так, например, гладкая мышечная ткань участвует в управлении диаметром дыхательных путей, кровеносных сосудов, в сокращении матки, мочевого пузыря, в реализации двигательных функций нашего пищеварительного тракта. Она управляет диаметром зрачка глаз, а также участвует во множестве других функций различных систем организма.

Мышечные слои

Мышечные слои образует этот вид ткани в стенках лимфатических и кровеносных сосудов, а также всех полых органов. Обыкновенно это два или три слоя. Толстый циркулярный - наружный слой, средний присутствует не обязательно, тонкий продольный - внутренний. Питающие мышечную ткань кровеносные сосуды, а также нервы проходят параллельно оси мышечных клеток между их пучками. Гладкомышечные клетки можно разделить на 2 типа: унитарные (объединенные, сгруппированные) и автономные миоциты.

Автономные миоциты

Автономные функционируют довольно независимо друг от друга, так как нервным окончанием иннервируется каждая такая клетка. Они были обнаружены в мышечных слоях крупных кровеносных сосудов, а также в ресничной мышце глаза. Также к данному типу относятся клетки, из которых состоят мышцы, поднимающие волосы.

Унитарные миоциты

Унитарные мышечные клетки, напротив, тесно между собой переплетаются, так что мембраны их могут не просто примыкать плотно друг к другу, образуя десмосомы, но также и сливаться, формируя нексусы (щелевые контакты). Пучки образуются в результате данного объединения. Диаметр их составляет около 100 мкм, а длина достигает нескольких мм. Они формируют сеть, и в ее ячейки вплетаются Волокнами вегетативных нейронов иннервируются пучки, и они становятся функциональными единицами гладкой мышечной ткани. Деполяризация при возбуждении одной клетки пучка распространяется очень быстро на соседние, поскольку мало сопротивление щелевых контактов. Состоящие из унитарных клеток ткани есть в большинстве органов. К ним относятся мочеточники, матка, пищеварительный тракт.

Сокращение миоцитов

Сокращение миоцитов обусловлено в гладкой ткани, как и в поперечнополосатой, взаимодействием миозиновых и актиновых нитей. В этом схожи различные виды мышечной ткани у человека. Данные нити распределены внутри миоплазмы менее упорядоченно, чем в мышце поперечнополосатой. С этим связано отсутствие поперечной исчерченности в гладкой мышечной ткани. Внутриклеточный кальций является конечным исполнительным звеном, управляющим взаимодействием миозиновых и актиновых нитей (то есть сокращением миоцитов). Это же относится и к поперечнополосатой мышце. Однако детали механизма управления существенно отличаются от последней.

Проходящие в самой толще мышечной гладкой ткани вегетативные аксоны формируют не синапсы, что характерно для ткани поперечнополосатой, а многочисленные утолщения, имеющиеся по всей длине, которые и играют роль синапсов. Утолщения выделяют медиатор, который диффундирует к расположенным рядом миоцитам. Рецепторные молекулы находятся на поверхности этих миоцитов. С ними медиатор и взаимодействует. Он вызывает деполяризацию у миоцита внешней мембраны.

Особенности гладкой мышечной ткани

Нервная система, ее вегетативный отдел, управляется без участия сознания работой гладких мышц. Мышцы мочевого пузыря являются единственным исключением. Управляющие сигналы либо непосредственно реализуются, либо опосредованно - через гормональные (химические, гуморальные) воздействия.

Энергетические и механические свойства данного вида мышечной ткани обеспечивают поддержание тонуса (управляемого) стенок полых органов и сосудов. Связано это с тем, что гладкая ткань функционирует эффективно, не требуется больших затрат АТФ. У нее меньшее быстродействие, чем у мышечной ткани поперечнополосатой, однако она способна сокращаться более продолжительное время, кроме того, может развивать существенное напряжение и изменять в широких пределах свою длину.

Итак, мы рассмотрели виды мышечных тканей и особенности их структурной организации. Конечно, это лишь основная информация. Можно долго описывать виды мышечных тканей. Рисунки помогут вам наглядно их представить.

Тема: "Мышечные ткани"

Вопрос 1 . Общие структурные особенности мышечных тканей

Объединяет несколько разных видов, но основное свойство общее – сократимость. Поэтому все мышечные ткани имеют сходные структурные особенности:

1. Клетки вытянутой формы и объединены в тяжи, или даже в симпласты (мышечные волокна).

2. Цитоплазма заполнена миофиламентами – нитями из сократительных белков (миозин и актин), взаимное скольжение которых обеспечивает сокращение. Характер расположения миофиламентов зависит от вида мышечной ткани.

3. Высокие энергетические запросы требуют множества митохондрий, включений миоглобина, жира и гликогена.

4. Гладкая ЭПС специализирована на накоплении Сa 2+ , который иницииирует сокращение.

5. Плазмолемма мышечных клеток обладает возбудимостью.

Согласно морфо-функциональной классификации выделяют:

1. Поперечно-полосатые мышечные ткани. В их цитоплазме главный компонент – миофибриллы (органеллы общего значения), который и создают эффект исчерченности. Этих тканей два вида:

Скелетная. Образуется из миотомов сомитов.

Сердечная. Образуется из висцерального листка спланхнотома.

2. Гладкая мышечная ткань. Ее клетки не содержат миофибрилл. Образуется из мезенхимы.

К этой же группе относят миоэпителиальные клетки, которые имеют эктодермальное происхождение и мышцы радужки глаза, которые имеют нейральное происхождение.

Вопрос 2 . Скелетная мышечная ткань Организация мышечного волокна

Структурно-функциональной единицей этой ткани является мышечное волокно. Это длинный цитоплазматический тяж со множеством ядер, которые лежат сразу под плазмолеммой. Мышечное волокно в эмбриогенезе образуется при слиянии клеток – миобластов, т.е., представляет собой клеточное производное –симпласт.

Мышечное волокно сохраняет общий план клеточной организации. В нем есть все органеллы общего значения, много включений, а также органеллы специального значения. Все компоненты волокна адаптированы для выполнения главной функции – сокращения – и подразделяются на несколько аппаратов.

Сократительный аппарат состоит из миофибрилл. Это органеллы, которые тянутся вдоль всего волокна и занимают большую часть всего объема цитоплазмы. Они способны значительно изменять свою длину.

Аппарат белкового синтеза представлен, в основном, свободными рибосомами и специализирован на выработке белков для построения миофибрилл.

Аппарат передачи возбуждения образован саркотубулярной системой. Она включает гладкую ЭПС и Т-трубочки. Гладкая ЭПС (саркоплазматическая сеть) имеет вид плоских цистерн, которые оплетают все миофибриллы. Она служит для накопления Сa 2+ . Ее мембраны способны быстро выпускать кальций наружу, что необходимо для укорочения миофибрилл, а затем активно закачивает его внутрь. Наружная мембрана мышечного волокна (сарколемма) образует многочисленные трубчатые впячивания, пронизывающие все волокно в поперечных направлениях. Их совокупность называют Т-системой. Т-трубочки тесно контактируют с мембранами ЭПС, образуя единую саркотубулярную систему. К каждой Т-трубочке …..

Энергетический аппарат составлен митохондриями и включениями. Митохондрии крупные вытянутые и лежат, в основном цепочками, заполняя все пространство между миофибриллами. Субстратами для получения АТФ служит гликоген и липидные капли. Включения миоглобина – специфического мышечного пигмента, обеспечивают волокна кислородом в случае длительной и напряженной работы мышц.

Лизосомальный аппарат развит слабо. Служит, главным образом, для процессов внутриклеточной регенерации.

Вопрос 3 Механизм мышечного сокращения

Для его понимания необходимо ознакомиться с молекулярной организацией миофибрилл – органелл, специализированных на сокращении. Это длинные тяжи, образующие продольные пучки по тысяче и более миофибрилл, которые почти полностью заполняют цитоплазму волокна.

Каждая миофибрилла построена из огромного числа актиновых и миозиновых филаментов.

Тонкие актиновые нити построены из глобулярных молекул белка актина, которые объединяются в две спирально закрученные цепочки. Более толстая миозиновая нить построена из 300-400 молекул белка миозина. Каждая молекула включает длинный хвост, к которому с одного края прикреплена подвижная головка. Головки могут менять угол своего наклона. Хвосты множества молекул укладываются плотным пучком, формируя стержень филамента. Головки при этом остаются на поверхности. На двух краях нити головки лежат разнонаправленно.

Благодаря дополнительным белкам, миофиламенты имеют стабильный диаметр и стабильную длину около 1 мкм. Филаменты одного вида образуют аккуратно подогнанные пучки или стопки. Миофибриллы образованы из многократно чередующихся пучков актиновых и миозиновых нитей. Высокая упорядоченность в расположении миофиламентов достигается с помощью различных белков цитоскелета. Например, белок актинин формирует Z-линию (телофрагму), к которой с обеих сторон присоединяются края тонких актиновых нитей. Так образуется актиновая стопка. Другие белки организуют в стопку толстые миозиновые нити, прошнуровывая их в середине. Они образуют М-линию (мезофрагму). При чередовании стопок свободные концы тонких и толстых нитей заходят друг за друга, обеспечивая взаимное скольжение друг относительно друга в момент сокращения. В результате такой организации в миофибрилле многократно повторяются светлые участки, называемые I-дисками (изотропные), и темные участки, называемые А-дисками (анизотропные). Это и создает эффект поперечной исчерченности. Изотропные участки соответствуют центральной части актиновой стопки и содержат только тонкие нити. Анизотропные диски соответствуют целой миозиновой стопке, и в них входят чисто миозиновая часть (Н-полоска) и те участки, где концы тонких и толстых нитей перекрываются.

Участок между двумя Z-линиями называют саркомером. Саркомер является структурной единицей миофибриллы. (20 тысяч саркомеров на миофибриллу). Строгая организация миофибрилл обеспечивается широким набором различных белков цитоскелета.

При сокращении длина миофибриллы уменьшается за счет одновременного укорочения всех I-дисков. Длина каждого саркомера при этом уменьшается в 1,5-2 раза. Процесс сокращения объясняется теорией скольжения Хаксли, согласно которой в момент сокращения свободные, заходящие друг за друга концы актиновых и миозиновых нитей вступают в молекулярные взаимодействия и глубже задвигаются друг относительно друга. Скольжение начинается с того, что выступающие миозиновые головки образуют мостики с активными центрами актиновых филаментов. Затем угол наклона головки уменьшается, мостики совершают как бы гребковые движения, смещая и актиновую нить. После этого мостик размыкается, что сопровождается гидролизом 1 молекулы АТФ. Связывание миозиновых головок с актиновой нитью регулируется специальными белками. Это тропонин и тропомиозин, которые встроены в актиновую нить, и препятствуют контакту с миозиновыми головками. При повышении в гиалоплазме концентрации Са 2+ происходит изменение конформационного состояния этих регуляторных белков и их блокирующее действие снимается. Гребковые движения повторяются сотни раз за одно мышечное сокращение. Расслабление наступает только после того, как снизится концентрация Ca 2+ .

Вопрос 4. Аппарат передачи возбуждения

Сокращение запускается нервным импульсом, который через моторную бляшку передается на мембрану мышечного волокна, вызывая волну деполяризации, которая мгновенно охватывает и Т-трубочки. Они тянутся от поверхности сквозь все волокно, по пути колечками окружая миофибриллы. Полости гладкой ЭПС, заполненные кальцием, чехлом оплетают миофибриллы, тесно контактируя с Т-трубочками. С двух сторон к каждой Т-трубочке прилежат обширные мембранные полости ЭПС (терминальные цистерны). Такой комплекс называют триадой. На каждый саркомер приходится две триады. Благодаря мембранным контактам деполяризация Т-трубочек изменяет состояние мембранных белков ЭПС, что приводит к открытию кальциевых каналов и выходу кальция в гиалоплазму. Происходит сокращение. Триады сопрягают процессы возбуждения и сокращения. После выброса специальные мембранные насосы активно закачивают Ca 2+ обратно в ЭПС, где он соединяется с Са-связывающим белком.

Вопрос 5. Сердечная мышечная ткань

образует мышечную стенку сердца – миокард. Ее морфо-функциональная единица – отдельная клетка – кардиомиоцит. Клетки соединены друг с другом особыми структурами – вставочными дисками, и в результате образуется трехмерная сеть из клеточных тяжей (функциональный синцитий), что обеспечивает синхронность сокращения во время систолы.

Кардиомиоциты – вытянутые клетки с несколькими ответвлениями, покрытые поверх плазмолеммы базальной мембраной. Их ядра (1 или 2) лежат центрально.

В составе миокарда выделяют несколько популяций кардиомиоцитов:

А) сократительные или рабочие

Б) проводящие

В) секреторные

Вопрос 6. Рабочие кардиомиоциты

составляют основную массу миокарда и обеспечивают сокращение. Их организация сходна с мышечными волокнами, но имеет ряд отличий.

Сократительный аппарат. Миофибриллы в целом имеют продольное направление, но многократно анастомозируют друг с другом.

Саркотубулярная сеть развита слабее. Т-трубочки более широкие, лежат реже и каждая контактирует только с одной цистерной ЭПС (диада). При возбуждении часть Ca 2+ поступает в гиалоплазму из межклеточного пространство через плазмолемму и мембраны Т-трубочек и лишь после этого происходит Са-индуцированный выброс Ca 2+ из ЭПС.

Энергетический аппарат. Митохондрии много, они крупные с плотно упакованными кристами, поскольку энергетические запросы миокарда очень высоки. Между собой они объединены особыми соединениями – межмитохондриальными контактами и образуют единую функциональную систему – митохондрион. Такая интеграция исключительно важна для быстрого и синхронного сокращения миокарда. Субстраты для получения АТФ поставляются липидными каплями, включениями гликогена и миоглобина. Сами мотохондрии способны накапливать кальций.

Концы соседних клеток или их стыкующиеся ответвления соединяются вставочными дисками. Диск имеет ступенчатую форму. Поперечные участки образованы десмосомами и придают соединению механическую прочность. Продольные участки содержат множество щелевых контактов – нексусов, которых особенно много в предсердиях. Благодаря ионным каналам нексусов возбуждение быстро распространяется вдоль всей мышцы.

Миокард обильно кровоснабжается. Все промежутки между кардиомиоцитами заполнены рыхлой соединительной тканью, в которой ветвятся капилляры. Здесь же заканчиваются ветвления нервных волокон вегетативной нервной системы. В отличие от скелетной мышечной ткани здесь образуются не нейро-мышечные синапсы (моторные бляшки), а лишь варикозные расширения. На сократительную активность кардиомиоцитов нервная система оказывает лишь регуляторной влияние. Вегетативная система лишь увеличивает (симпатический отдел) или уменьшает (парасимпатический отдел) частоту и силу сердечных сокращений.

Ритмичная генерация импульсов, которые заставляют сердце постоянно сокращаться, обеспечивается специальными клетками самого миокарда. Совокупность этих клеток называется проводящей системой сердца, а способность сердца сокращаться независимо от нервных стимулов – автоматией сердца.

Вопрос 7 . Проводящая система

включает специализированные кардиоммиоциты, называемые также атипичными. К ним относят:

Пейсмекерные клетки или водители ритма. Их главное свойство – неустойчивые потенциал покоя наружной мембраны. Благодаря К/Na -насосу натрия всегда больше внутри клетки, а калия снаружи. Эта разность ионов и создает электрический потенциал по обе стороны плазмолеммы. При определенной стимуляции в мембране открываются натриевые каналы, натрий устремляется наружу и мембрана деполяризуется. У пейсмекерных клеток благодаря постоянной небольшой утечке ионов плазмолемма регулярно деполяризуется без всяких внешних сигналов. Это вызывает потенциал действия, распространяющийся и на соседние клетки, вызывая их сокращение. Главные водители ритма – это кардиомиоциты синусно-предсердного узла. Каждую минуту они генерируют 60-90 импульсов. Водители ритма второго порядка образуют предсердно-желудочковый узел. Они генерируют импульсы с частотой 40 импульсов в минуту, и в норме их активность подавляется главными пейсмекерами. Пейсмекерные кардиомиоциты – мелкие светлые клетки с крупным ядром. Их сократительный аппарат развит слабо.

Проводящие кардиомиоциты обеспечивают быструю передачу возбуждения от водителей ритма к рабочим кардиомиоцитам. Эти клетки объединены в длинные тяжи, формирующие пучок Гиса и волокна Пуркинье. Пучок Гиса составлен клетками среднего размера с редкими длинными извилистыми миофибриллами и мелкими митохондриями. Волокна Пуркинье содержат самые крупные кардиомиоциты, которые могут контактировать сразу с несколькими рабочими клетками. Миофибриллы здесь образуют редкую неупорядоченную сеть, Т-система не развита. Вставовных дисков нет, но клетки объединены множеством нексусов, что обеспечивает высокую скорость проведения импульсов.

Вопрос 8. Секреторные кардиомиоциты

В предсердиях встречаются отросчатые клетки, в которых хорошо развита грЭПС, комплекс Гольджи и содержатся секреторные гранулы. Миофибриллы развиты очень слабо, поскольку основной функцией является выработка гормона (натрийуретический фактор), регулирующего обмен электролитов и артериальное давление.

Вопрос 9 . Гладкая мышечная ткань

Построена из гладких миоцитов. Сократительные филаменты в этих клетках не имеют жесткой упорядоченности и миофибриллы в них не образуются. Вследствие этого отсутствует и поперечная исчерченность. Гладкие миоциты довольно крупные клетки веретеновидной формы, покрытые сверху базальной мембраной, которая соединена с межклеточным веществом. В центре вытянутое ядро, у полюсов грЭПС, комплекс Гольджи и рибосомы. Клетки секретируют компоненты межклеточного вещества для своей наружной оболочки, а также некоторые ростовые факторы и цитокины. Много мелких митохондрий. Саркоплазматическая сеть (гладкая ЭПС) развита слабо, она выполняет роль кальциевого депо. Системы Т-трубочек нет, и их функцию выполняют кавеолы. Кавеолы – это мелкие впячивания плазмолеммы в виде пузырьков. Они содержат высокие концентрации кальция, который захватывают из межклеточного пространства. В момент возбуждения Ca 2+ из кавеол выходит наружу, что инициирует освобождение Ca 2+ из саркоплазматической сети.

Организация и функционирование сократительного аппарата своеобразны. Актиновые и миозиновые филамента очень многочисленны, но не образуют миофибрилл. Для их упорядочивания в миоците существует система плотных телец. Это округлые опорные образования из белка a-актинина и десмина. В них одним концом закреплено по 10-20 тонких актиновых филаментов. Одни тельца образуют прикрепительные пластинки в сарколемме, другие цепочками лежат прямо в гиалоплазме. Так в миоците формируется стабильная сеть из актиновых нитей. Толстые миозиновын нити имеют разную длину и очень лабильны.

Каждому сокращению предшествует выброс кальция, который связывается с особым белком – кальмодулином. Это активирует фермент, обеспечивающий быструю сборку миозиновых филаментов. Они встраиваются между актиновыми нитями, образуют с ними мостики, и их головки начинают совершать гребковые движения. При взаимном скольжении нитей плотные тельца сближаются, а клетка в целом укорачивается. Таким образом в гладких миоцитах кальций взаимодействует с миозиновыми нитями, а не с актиновыми, как в поперечно-полосатых. АТФ-азная активность миозина намного ниже. Вместе с постоянной сборкой и разборкой миозиновых филаментов это приводит к тому, что гладкомышечные клетки сокращаются медленнее, но могут длительно поддерживать этот состояние (тонические сокращения). Между собой клетки объединены рвст, которая вплетается в их базальные мембраны, а также различными межклеточными контактами, в том числе и нексусами. Сократительная активность миоцитов находится под контролем нервных и гуморальных факторов. В соединительно-тканных прослойках расположены варикозные расширения аксонов вегетативной нервной системы. Их медиаторы деполяризуют ближайшие миоциты, а к остальным возбуждение передается по щелевидным контактам.

Благодаря широкому набору мембранных рецепторов гладкие миоциты чувствительны ко многим биологически активным веществам (адреналин, гистамин и т.д.) и реагируют по разному, в зависимости от органной специфичности.

Вопрос 10. Гистогенез и регенерация

Скелетная мышечная ткань. Из миотома сомитов дифференцируются одноядерные активно делящиеся клетки – миобласты. Они сливаются в цепочки - мышечные трубочки, многочисленные ядра которых уже не делятся. В трубочках начинается активный синтез сократительных белков и формирование миофибрилл, которые постепенно заполняют всю цитоплазму, оттесняя ядра на периферию. Образуется мышечное волокно, внутри которго миофибриллы постоянно обновляются. Между плазмолеммой и покрывающей ее базальной мембраной кое-где сохраняются одноядерные клетки – миосаттелиты – камбиальные клетки, которые могут делиться и включать свои ядра в состав волокон. Рост мышечной ткани у взрослого человека происходит, в основном за счет гипертрофии волокон, а их число остается постоянным. После повреждения миосаттелиты могут сливаться, образуя новые волокна.

Сердечная мышечная ткань образуется из миоэпикардиальной пластинки в составе висцерального листка спланхнотома. Деление кардиомиоцитов заканчивается вскоре после рождения, но в последующие 10 лет могут формироваться полиплоидные и двуядерные клетки. Поскольку камбиальных клеток нет, то возможна только внутриклеточная регенерация и гипертрофия кардиомиоцитов. Она происходит в результате длительных физических нагрузок, либо в патологических состояниях (гипертония, пороки сердца и т.д.). После гибели миоцитов (инфркт миокарда) формируется соединительно-тканный рубец. В последнее время установлено, что отдельные предсердные миоциты сохраняют способность к митозам.

Гладкомышечная ткань регенерирует как за счет гипертрофии, так и за счет гиперплазии



mob_info